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\\’c cc,r,sidcl  tt,c },roblc]!l  of fillctil]g a ]Ilathrvllatically o[,tirllal  al-
gori[hr[l  to estin,ate  soil pararl~eters  based  on radar ancl/or other

5“’Ill Cas LlrC>]ll Crlts. . ~eclfl  Cailj’, glve[l !lleasurellle  Uts !ll~, !rl~, . , t>t J

[c[~reseuting  radar cross-sections of a giveli  resolution elcrnrmt
at diffcrcllt l~olarizrrtiorls  arid/rrr different frcquerlcy  bands,  and
givcrl a[l apprc)xilllate lr]odel  expressing ttle dependence of t}lcsc
rtleasureltw[]ts  on the d i e l ec t r i c  corlstarlt c and ttlc r.rl L.s. sur-
face I]cight  h of t}le corres[]onriing  resolution elenlent, we would
Iikc tc) ]I]akc all “oplinlai” estinliitc  of the actual c and h t h a t
\avc r i s e  t o  t h e  p a r t i c u l a r  r{t~, 7/lz, observed. Ily  “optin]al”
w(, rllcal) t}iat  our algcrrithrll  sl]ould  []roduce  estirJ]ates  that are,
or] a~erag,e,  as close as [)ossible  to the actual  values.  To ot_-
tail]  such an algorithn~,  we assume that we have at our disposal
a data catalogue  consisting of careful r[ieasurerllerlts  of t}]e soil
I)ararIlet,ers  c and h, on one  barld,  and the correspondi~lg  re[llote
scrlsir]g data 7rL,, 7t~2  etc, ori the other. \V’e  also a<surrw that wc
}Iavc used this data to write dowu, for each j, an approxinlate
forl[lula  which conl})utes  arl average value of ~rLJ to associate to
tlie coriespo]ldirlg  values of t, h. Rather  than throw away  the
data cataloguc  at this stage, and use the average fornlulas in a
dc,t(,I Iliirlistic  fa.sli  ion to solve ttlc illvcrsc  probleni, we pro[>osc to
usc tllc clata  cataloguc  r[]ore fully  and quantify the spread of the
[Ileasur{,r]wrlts  about the average forl[lula,  then incorporate this
illfol lr]atiorl  into the inversion algorithm. ‘l’his paper describes
[low ;ve accor,l~,lish  this usirig  a }Iayesian  approac},,  Ir, fact,  our
llictt~od  allows us to

1)

2)

3)

4 )

n]ake  an optimal estimate of t and h

place a cluarltitatively  houest error bar on each estimate,
as a function of the actual values of the remote scnsitlg
rlleasurcl[lerlts

fioc-tune the initrd  forn]ulas  expressing the depet,dence of
t}le re[[lote  selising  data on the soil parameters

take into account as n]any  (or as few)  relrlote  sensi]ig  n]ea-
su[erlle[lts  a.q we like in rrlaking  our estit[]ates  of t and h ,
in each case producing error bars to quantify the bcr)efits
of using a particular combir(ation of nleasurcnlents.

M A T H E M A T I C A L  A P P R O A C H

Ilccause the laws of scattering fronl  rar]dorrlly  rough natural sur-
faces  arc cluite  contplicated,  especially at rrlicrowavc  frequcricies,
ettli,  irical  models have often been used to help express the ob-
scr ved rer[lote  sensing nleasurer[ler)ts  as a function of the surfact
[)arar,leters.  A typical approach, adopted in (Oh et al 1992), is
to start with a “training set” consisting of a catalogue of care-
fully collected data: in the case  of Oh et al 1992, this catalogue

r-or)  sists of 1,-, C. and .X- bar]d polarir[]etric  radar t)ackscattering,
r[~easurer[w[~ts  fc)r various bare soil surfaces, aloltg  with laser-
~,rofiler arid d i e l e c t r i c - p r o b e  rllcasurerlierlts  of the corrc~l,orld-

lrlg r,rrl. s, surface height and dielectric co[lst  ant valum. Guidecl
by tl,e p h y s i c s  that g,overu elect  rorllagnetic scatterirlg,  al,d us-
iIig  the data at hand, an approxir[late  r[lodel  relatirlg,  the radar
I,ackscatter  to ttle surface paran]cters  car] be establ ished.  Orle
\vay to proceed is  to  disregard the data  catalogue frorll this
I)oilit or): gi~,en a  p a r t i c u l a r  r a d a r  nleasuren)erlt,  a deterrrlirl-
istic  r[lcthod  can be used to  irlvcrt  t}le approxirriate  rlloc]ei slid
retrieve the corres[)orlclirlg  surface pararl]eters.  I’he accuracy of
tllc retrieved }Jarar]tcters  would naturally dcperld  on the irlvcr-
<ioll [Ilethod  used, and wc)uld  be cliff icult  to quantify.

Another approach, that can potentially nlake  fuller use of
t h e  d a t a  catalogue,  is to nlodel  not o]lly the approxirr]ate de-

~>eriderice  of the radar backscatter on the surface pararncters,
but also the spread of the actual data at,out  the approxinlate
model .  Indeed,  t}lc approxinlatc rllodel  can bc  nlore  or less ac-
c urate over certain irltervals. Using this i!lfor[tlation  about its
accuracy, and how it del~ends  orl the values  of tile surface pa-
ranletms, m eviderlced  by the carefully collected data, can only
I,el},  ir, the irlversion  prob]ern.  Iri f a c t ,

1)

2)

3)

4)

a Bayesian  approach can irldeed  use this il]for]llatiorl  to
produce an opt imal  algori thm, i.e. an algorithln  which,
arrlong  all possible algorithnls,  and  on average, makes the
sIrlallest  er[or in its estimates of t}le surface parameters.

iforeover, such arl approach car, quantify the accuracy
of i ts  est imates,  deperlding, rlaturally,  on the values  of
the measured radar backscatter  in every case.

It also turns out that the approach allows one to fine-tune
the ini t ial  approximate model to better  f i t  the data.

Finally, the approach does not restrict o“ne to a r,resl,ec-. .
ified ntrrrlber  of input rlleasurel  ILents:  indeed, it can use
a n y  c o m b i n a t i o n  o f  i n p u t s  t o  p r o d u c e  a n  e s t i m a t e
of the surface parameters that is based on these inputs.
Moreover, it can quantify the uncertainty of t}iese esti-
n]ates. Ibis is  important  because i t  provicles  a natural
IIiearls of evaluating the usefulness of using one or arlottler
cor[lhirlatiorl  of r[]easurerlients  to estirliate  ouc  or another
surface parameter.

kbr deflr,iteriess,  we consider the following specific problem:
Given two n]easurenlents  m and n, represerrtirig  respectively the
ratio of }1[1  to VV L-band radar cross-section and the ratio of
[IV  to VV cross sections, respectively, of a single radar resolution
elcrlient,  we would like to rr]ake an ‘Lopti[llal”  estirr]ate of the
correct pair (t, h) that gave rise to the particular (m,n) observed.
lly “optima]”, we mean that the r.rn. s. difference bctwecu  the



. .

.’ o}~tilllal e s t i m a t e s  allct t h e  a c t u a l  v a l u e s  of c ar]cl  }1 s}ioulrt  hf.
s][lallcst  anlong all the crmrs n]ade  by any  candidate mtinmtors:
the o[)tir[lal  nwthcrd  is the orw which, on avfrage, Le. over niany
(all) observations, r,la!ies the sr],allest  error.

\ rlatural  ~vay to proceed is to look  for exl,ressions of tt,e

forl[l ?Il = j(t, h),  It = g(c,  h).  Yet  i t  i s  ulllikcly  t h a t  arly git’cri
carldidatc  furlctiorls f or g can rnakc  these e q u a l i t i e s  Cxactly
t! UC, cvm,  Lecausc  of noise arlrt other  uncertaint ies  inhcrcvlt  to
I adar data. lr] fact, rllodcling  the average rlcpcr]derlce  of 7ri and
rj orl c and h is not sul[icicrlt, in itself, to  allow orw to ctr4errIlirle
~vtlict] c arid h b e s t  corrcs~~ond t o  givcrl  rr]easurerllcr]ts  ?~l, ~t:
orlc [I]ust still rr]odcl  the drym]iclcrlce of ~n and n on the rr]any
r{,lllairlirlg  factors, whose orllission  frorl] the Cleter]liillistic  equa-
tiorls  is ir]dcd  the reason that these equatiorls arc ncvCr exaCtiy
vcrificci. Iri order to find an optinial  procedure,  one needs  to
rilakc an cfTort  to rllathe[llatically  account  for  the discreparlcy
t)cttvccn  the left-  and right- hanc- sides of the deterrllinistic  rc-
Iatio!ls.  \Ve t}lcreforc  replace tt)ese  by stochastic cquatiolls

?71 = j((, h) Mr

11 = g(f, h) M2 (1)

WIICIC (~,  g) rcprcscrlt the dctcr]llillistic  “typical” or  “average”
way iri which (tr~, n)  depend on t and h, and where the ~lfj
arc ralldoIil  variables that  do  not dc[)cnd  orl ( or h and whicl]
rc~,rescr]ts  the rernairling  randor]uicss  in (rr~,  n).

O n c e  we have succccded  ir, estat,lishirlg  (1), and idcrltify  -
ir]g the joint he}lavior  of the randorll variables (,tfl, J\fz),  there
rCrlla;HS tO COrlll)Ute the Conditional  derlsity furlctlon  P(c,h)l(m,,n)
for  ~, h giveti  the rncastrrcd  values of m and n. [Jsirl.g Baycs’s
tticorcln,  the unnormalizcct  version of this conditiorlal dcrlsity
satisfies

(?!:3..-  _ T( *,,  *,2  ~ :’:.7’(c’h)l@””) ‘“ 7(;,  h)g((, h)
-— —..j(c, h) ’g(:h) ) (2)

where P((,h) is the a priori joint density for (c,h), in which orle
iricl(ldes  all t}]c a priori in forlilation  a b o u t  ( arid h ( s u c h  a s
estir]]ates  based on other irlstrurrleuts  - irl case one does not
!iI,ow anything a priori about t}~crr,  except their physical range
of values, ?’(<,,$)  would just be the uniforr[l  density function over
the product of the corresponding intervals).

[Jsing  the conditional density given by equatiorr  (2), the
o$>tirr]al  uiibiascd estinlator  t for c that has nrir]inlunl  v a r i a n c e
(i.e. tl,at rr,inin,izes  the r.nl.s.  elror) is the conditional rrwan

Sirllilarly,  the optin]al  unbirwed  estimator ~ for h is the condi-
tional nican  S{hl(rn.  n)}. Formula (3) is quite easy to discretiz~

(irl ~ and h) and evaluate numerically. ‘1’bus, if we can replace
the deternlinistic equations by stochastic equations (1) in such
a way that we also know the joint density funct ion P(,M,,M2)
of (Afl  ,M2),  we have a straigbforward  method of obtaining the
optirrlal  estirrlate,  arid  of calculating all its nlorrtents.

We applied our approach tc, the ca~e where the model and
data to be usad  are the University of Michigan Radiation I,ab&
ratory Model (Oh et al 1992), and the corresponding set of radar
crc)ss-sections  rnea.surcd  by the LCX polarirnetric  scatterometer
l’O1,Al{S~A’l’  (Oh et al 1992). Specifically, we assun,c that

g(f, h) =. o,23fio(l  –  c-~h) (-1)

Ivl]crc O is tllc irlciderlce  a[lglr-  of tllc radar  bcarrl,  k is the ~vavc

Ilurllbcr,  arid 1’0 = l’.(() = l&$12 is the Fresnel  r e f l e c t i v i t y  o f
the surface at  nor[nal  irlcicleflce, \Vc further  assunle that t}lc
fur,c[iolls  j,g rrdel rII,7L in the scvise t ha t  ?/L/j(c,  h)  = .Ifr =

.~I /~-j and  n/g(c, h) = .tf2 = ,Vz/1hr,3,  where N,,  .V2 and .\’3  are
ilidc~)erldcnt,  I’-distribrrted  randolrl varial~lcs.  I’ractically, t h i s
rlicarls  that

1 (r/() ~-’(y/v)”-r 1’(0+ .)+ -r)
~(hf,,Afj](~,  y) = — . —–.-—- -.-.– .–– ~-- -,_-

/u (r/( + y/IJ -I 1)0+”+’ I  (n)  I  (L?)I(;;
(5)

w,llcre  the pararrleters  Q, ~, ;, <, v arc to bc d e t e r m i n e d .  I’he
Inodel  wc used for ,kfj was based  orl a study of the nature of
t h e  randorr]rless  prcscrlt  in (7n, ~L). orle scjurce for th is ra!ldorri-
rless is the norl-6-furlction  distribution of t}le background power
level. Another is that the candidate functions j’ and y niay  WCII
turrl  out to be poor approxinlat ions of the true IIlcal,s.  Indcccl,
ever] if orre used a very accurate nlethod  to estirllate  the sar[r-
I,le rncan,  orjc rcrIlairls  vulrlerable to nwasurcm,ent  error, arid to
coritarllinatiorl of the rr]easurenlerlts  try urlkr]owrl  scatterers on
t}lc surface ( “debris”, etc). ‘] ’aking all tllme corlsiderations into
accourlt,  it is r)eit her  unreasonable  nor arbitrarily restrictive to
assurlle  that the nleasurcnwnts  m and II are related to c and h
t)y equation (1), in which each ,tf,  is distributed like the ratio
of tllc two corresponding (indeperlderlt)  1’ distributions. lVith
(he  \fic}ligar]  data (Oh et al 1992), a ~z-test for  goodness of
fit shows that cr = B = 5, < = 1.04, u =. 0.82 do fit t})e data
WCII,  these values having appropriately been deternlined  usirlg
the rrlaxinruto  likelihood approach.

RESU1,TS
Figure 1 is a contour plot of the optirllal estirllate  t c, as a furlc-
tion of the cross section ratios ni and rl at O == 40°. ‘1’hc val(isw
of t were obtained using our Baycsian  approach, and starting

with art a priori density function P(c, h) that is ur~iforlr)  over
the rectangle 2 < c < 20, 0 < &h < 1. Overiaid on the
ccjntour  plot of figure 1 are those sanlples of the Michigan data
that were collected at 40” incidence, each acconlpanied by the
value of c conlputed  according to the inversion algorithm pr~
posed by Oh et al 1992, as well as the measured values, At
40°, the value of c calculated by the direct inversiorl  algorithrrl
falls within 25% of the rneaqured  value in four out c,f the eight
sarrlp]es,  but it misses  by 10070 in three casea,  Figure 2 shows
the estirrmted variance of our estirnatea  of c. In this case, the
rriodel consisting of tbe function f and g of equation (4) can
bc considered ‘useful” if tbe r.rn.s. uncertainty of tbe estimates
that we obtain with it is snlal]er than the a priori uncertainty
nlade by iw.surriing that c and kh are uniformly distributed, i.e.
if the r.m.s.  uncertainty in t is smaller than (20 –2)/@ ~ 5.2.
Figure 2 shows that this is indeed achieved everywhere. In fact,
t}le rlurnerical  results show that the r.nl. s. relative uncertainty
in t}le case of c is never worse than 50~o. .41though  sonlew,  hat
high, this value seems encouraging.

One way to reduce tbe uncertair,ty in our cstin,atcs is to
tune the parameters  in  t}le model to the situation at hand.
Specifically, one can postulate a model of the form
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IJ(f, h) = bl’o’(l -  C-LA) (6) 011, }’. Sdral)all,li. K ,  aIId l’lalJy, 1:’1’: “:\II e[ll[,irical IIIf,dvl aIId

togcthf.r with a  prol,ability cleusity  functioIl  ‘F’,ifl,  hf2) fc)l the

Ot)smi,erl ratios  (rJi/J,  n/g) of ttle forll)

as  before,  tllctl  go OTI to cfcterrliine  a, b, c and N in order  to
!Ilaxil]li?,e the Iikeli}iood of observing the radar cross sections
re~mrted  ir] tile hficbigar]  data.  At [ , - b a n d ,  w e  fou~)d that the
o])ti[])al  values  fc, r a, b  atld c wcIe a = 0,3367,5, b = 0.]2344,
c  z O iilld .V = 1 5 ,  I“}le accurircy  o f  t h e  c- a n d  h -  estinlates
does illlprot,e, m does  the sigrlificalice  of the spread bctwcwn  t}lc

optirllal mtinlates  w the dry and wet cases for the other sarll}~les,
osl)ccially  at t}lc steeper ir]cide]]cc  ar)glcs,  Yet the variance be-
twccll  of the f-rxstirt)ate  rer])airls  unconlfortabty  large conlpared
with ttle difference between the wet and dry ca.wx.

LVe can furtbcr reduce the uncertainty in our estinlates by
tryirlg to fuse data collected fro!ll  diffcrc[lt  “’ins truriwntsn,  or dif-
fcrcllt  har)rls  in the case  at hand, nan]ely  1,-, C- and X-bands. 10
r]lakc use  of the three polarizations from the thr~ bands sin!ulta-
neously,  we first replace kh and c by two frequency-indepcndmrt
],aral[wtcrs.  say h itself arid the rl]oisturc content  p, l’bc cxpres-
sioll fc)r t}lc conditional density function ‘P for (pi h), conditioned

‘1’ahlc  I: Soil rl,oisture  e s t i m a t e s  u s i n g  Hll/VV and IIV/VV
ratios at 1,, C aild X bands

on these 3 pairs of observations, is derived M above, and the cml-
ciitional  nleans  of ‘P is the optimal estimates for p and h g i v e n
the 6 nwa~urerlwr]ts  a t  h a n d . l’able 1 sunmlarizes  the results
for Ii. The eStinlCIkd  r.m.s.  uncertainty almost  never reaches
50% of the estimated moisture content anymore. In fact, except
iu the roughest cwre, the wet-dry spread is typically as large
M t}tc uncertainty in the estimate, whereas in the L-band-only
c~~e  it was  very much smaller. This is very important because it
in~plies that t})e combination of L-, C- and X-bands does allow
rme to estir[late  the soil  moisture content accurately e[lough  to
consi.stmt]y  discriminate between wet and dry conditions.

A C K N O W L E D G E M E N T S
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